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criminator can be made with a circular waveguide de-
tector, where TEq and TEy modes interfere. The de-
tectors must be situated in the same transverse plane
but at opposite walls in such a way that the coupling
with the TE;; mode is maximum. A small asymmetry
is already sufficient to excite the TEq mode. Usually
the guide is below cutoff for this mode, which means
that it forms a resonator for the TEy mode. As the
detector currents due to this mode are antiphase and
those caused by the TE;; mode are in phase, the dif-
ferential voltage of the two detectors as a function of
frequency gives a discriminator curve.
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If condition (1) is fulfilled, wall-current detectors
with identical frequency characteristics can be con-
structed for frequencies lower and higher than X-band
frequencies and for other types of transmission lines.
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Summary—Equivalent expressions for the electric permittivity
and magnetic permeability tensors of artificial dielectrics are de-
rived. These are expressed as functions of particle dimension, shape
and density and also as a function of the incident electromagnetic
beam direction with respect to the orientation of the particle. Only
the case of a uniform density of equally oriented particles is consid-
ered. The results are valid in first order for prolate and oblate spher-
oids. Spheres and disks are obtained as limiting cases.

INTRODUCTION
THE DEVELOPMENT of microwave applica-

tions in the two last decades caused an extension
of optical techniques to this region of the electro-
magnetic spectrum. In 1948, Kock! proposed that a
three dimensional lattice of identical metallic particles,
disposed as atoms in a crystal, would act as an “arti-
ficial” dielectric. Equivalent arrangements may be ob-
tained in different ways,? but this paper will be re-
stricted to the important case of lattices of oriented
particles.
Some of the more important applications of artificial
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dielectrics are: phase delay lenses, filters and polariza-
tion transformers. The physical mechanism is very
simple: as a convenient wavelength electromagnetic
wave is incident on a metallic particle, electric dipole
moments and currents are induced in the particle. This
will produce a phase delay in the electric and magnetic
vector fields, in the same way in which it occurs in nat-
ural dielectrics. These delays depend upon the mag-
nitude of the induced moments and currents, which in
turn depend on the shape and the orientation of par-
ticles. These induced moments and currents can be
accounted for by the proper permittivity and permeabil-
ity tensors.

THE DEBYE AND M0SSOTI APPROXIMATIONS

If E' is the local field, p the mean dipole moment per
particle, then, under a quasi-static field approxima-
tion, p =«E', where a is the polarizability. The polariza-
tion vector P becomes P= Np = NaE', where N is the
number of dipoles per unit volume. As P=D—¢FE
= (e—¢p) E, where E is the applied field, there is

NaE' = (¢ — €)E.

Debye’s approximation consists of neglecting the
contribution of other particles to E' and in the conse-
quent identification of E with E*. This leads to

Na
& =—-+1,

€0
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where

€
er = — .
€o

A similar approximation gives:

L[]
ﬂr_llo|: Ho

In order to avoid resonance effects the particle dimen-
sions must be less than A/4,® and in order to avoid dif-
fraction N must be longer than the distance between
neighboring particles.

Mossoti’s approximation? takes into consideration the
contribution of the polarization of distant particles to
the local field acting on a reference particle and neglects
the contribution of near particles. This is a better ap-
proximation for natural dielectrics, where packing is so
high that one cannot neglect mutual interaction of di-
pole moments and induced currents.

Nevertheless, Brown? has shown that for a cubic
lattice of spheres Debye’s and Mossoti's approxima-
tions are equivalent, if the sphere diameter is <0.7d,
where d is the distance between neighboring particles.
So if it is assumed that this is also true for spheroids,
the simpler Debye theory can be used to avoid the
mathematical complications arising from Mossoti’s ap-
proach.

It is then assumed that the longest dimension of the
spheroid is smaller than 0.7 the lattice constant.

THE PROLATE CASE®

Here the prolate coordinates® which can be related to
the cartesian system by

x = pcosd, = p sin 6, 2z = cné

and

p=cV(E - 1A -9, (2

where o >£>1, —1 <9 <1 and 2¢ is the focal distance,
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will be used. The relation between the prolate system
and a spherical reference system is given by

n§
VE+ g —1

® = @, =cVE+nt—1, cos § =

gngo YE-DA =) p 3
VE+ -1 r

and, for £>1, (3) reduces to

r = ¢k, cos § = 9, $ = P, 4)

For oblique incidence, the electric and its associated
magnetic field may be described by:

E(z)" = Ewoée”“
Ewyt = Eqfe*

E(;)’. = E,.5et¥

H(y)l' —_ Hoyygikz
H ¢ = H, 2¢"*=
H (' = Hyde™v, (5)

#(9, £) is a unitary vector in the x(y, 2} direction,

e\ 1/2
()
Mo
and a harmonic time dependent factor of the form
et is implicitly understood.
As done by Rayleigh,” the incident field in the neigh-

borhood of the spheroid may be approximated by its
first term in a series development:

Eii = Enf, Ei,'= E,$ and Eu'= E.:i (6)

The subscript “1” means a first-order approximation.

The potential function related to E must satisfy
Laplace’s equation which in our case can be solved by
separation of variables. This method leads to Legendre
equations. The characteristic potential functions in our
reference system become

Cos
Ve = (=) P, (n) Pam(§) . m®
° sSin

CO5
Voo = (= 1D)"P"(n)0um(§) . md, (7
° sin

where P,m and Q,™ are associated Lengendre functions
of first and second kind respectively.
Being restricted to quasi-static fields, the conditions

VXA=0 and V- A=0 (8)
must be fulfilled by E; and Hi.

7 J. W. S, Rayleigh, “On the incidence of aerial and electric waves
upon small obstacles in the form of ellipsoids or elliptic cylinders, and
on the passage of electric waves through a circular aperture in a
conducting screen,” Phil Mag.,vol.44, pp. 23-52;1897. Rayleigh only
considered scattering, where the direction of propagation was along
one principal axis of the spheroid with the electric vector along an-
other principal axis.
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A typical solution for (8) is A=Vy where ¢ is given
by (7). The notation, introduced by C. T. Tai® and
based on the set of solutions of (7), z.e.,

ng = Gv‘l’gm", )

will be adopted here. Direct examination of S,m, and
comparison with (2) shows that °

£ =S =W, W = CV[Pll(E)Pll(ﬂ) cos 0]

§ = Souu® = Vo @V z2 = S = W, (10)

The scattered field (Es, H*) will now be constructed.
The near field is a quasi-static field, but the distant field
behaves as a spherical wave. Rayleigh’s method con-
sists of identifying the near field with a field possessing
the characteristics of a spherical wave in a region in-
termediate to the distant and near field regions.

On the surface of the reference spheroid the following
conditions must be fulfilled:

X (B4 B =0, & (H +H)=0, (11)

where £ is the unitary vector perpendicular to the
spheroid surface.

As the scattered field must be divergent, there is, in
the vicinity of the spheroid,

Elxs = aonSell(g)
Elys = ayEoSoll(Z)

}11:6’g = ,BxHoSoll(Z)
Hlys = ﬁyHoSell(g)

Elzs = azEaS001(2) le'g = )82H0S901(2)- (12)
Now, by combining (12), (11), (6), (5) and (10),
Pll(éo)
oy =y = — )
Qll(&)
Pl(go)
a, = -
Ql(EO)
a PG
o "55 e ]
T L ‘ QI(E)J
23 ' E=%
f¢] P )
‘/ Py 1(&
Bo= —| ——— (13)

© 0
9t ' t=to
are obtained.

Egs. (12) and (13) describe in first order the

scattered near field. Proceeding with Rayleigh’s
method, from (10),

8 C, T. Tai, “Quasi-Static Solution for Diffraction of a Plane
Electromagnetic Wave by a Small Oblate Spheroid,” Stanford Res.
Inst., Menlo Park, Calif.; Tech. Rept. No. 24; 1952,
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i 1 — 97\Y23P(n) cos
=5, = Pyt 4
5; o1 <£2 — 772> A ! (77) sin n
£ — 1>”23P11(§) cos _,
P! )
+ (‘52 — 5?2 JE £ ) sin ‘
N 1 Pl P sin ®é
TVE-Da—m T cos
. 1 — 9*\"? dPi(n) .
g = 5?01(1) = (Eg _ 7]2) an P1<£)1v]
£ — 1\ aPi(§) ,
2 P . 14
() P (19

For £>1, Legendre associated functions and deriva-
tives become

0 = — = Spis, 0 =—
== = - - = [\ _——
' 3 9g T 3 Y™
a0, 2
—_ P(E) = — Pl =1,
py pyv ME) =& i
Ié]
Pi(§) = ¢ — P, =1, Pi(n) = cos d,
df
i)
Pi*(n) = sin 6, — P =1, — Pyt = — cotg b,
an dan

so that the scattered near field is given by

c\% 2
Elzs = a.l:EO.E R
r/ 3

-[2 sin 0 cos &7 — cos 0 cos @ 4 sin BB]

c\® 2
E]zs = ayEgy 7 *3—

-[2 sin 6 sin & — cos 6 sin B — sin Bb]

c

32
L. = aE,, <—> 5 [—2 cos 67 -+ sin 64]. (15)
7

According to Stratton,® there are two sets of spherical

wave functions which can be used to represent the
scattered field,

(n+ Dn sin
N.,,, = ———— Z,(Kr)Py"(cos 0)  m®d?
° Kr cos

i 9 I¢] cos .
4+ — — [rZ(Kr)| — P.m(cos8) . m®h
Kr or a6 sin
m

F:] sin "
¥ ——— — [rZ(KP)]P.m(cos8)  mdd (16)
Krsin® oar cos

9 J. A. Stratton, “Electromagnetic Theory,” McGraw-Hill Book
Company, Inc. New York, N. Y., pp. 414-416; 1941.



120

and

m
sin 8

sin
Memn = ¢ Zn(Kr)an(COS 0) m@@
? cos

a cos n
— Z(Kr) — Py(cost) . mdd,
a0 sin

where Z,(K7r) is a spherical Bessel function of order #.
Now, for r<},

and —6— [rZ(Kn)]| =

or K2

7
Z(Kr) = ——
1( ) K27’2

and N%; and N, become

i

Ng“ = K38
. cos cos 4
-[2 sinff . ® —cosf | ®6 L sin @@}
sin sin
Neoy = ——[—2cos 67 + sin 64]. a7

K33

By matching (15) with (17) in the intermediate re-
gion,

2
Bt = 'Ya:Nell Yz = 7""3— K3c%a,E oy

2
By = v,No where v, = 1’5’ Ko, E,y  (18)

i
Elzs = ’Y;Nenl Y = — —3' Kscgaonz

which gives the scattered near field. In order to obtain
the distant field (E», H"),

eiKr

Zl(KT) = — Jre
¥

is put for #>>\ and for the distant scattered field the
following is obtained:

2 R eiKr
Ey7 = E K2c3a,[cos 0 cos ®0 — sin $d) — E,,
7
2 ) . eiK'r
E.,7W = ? K%say[cos 0 sin ¢ + cos <I><I>] E,y
l'd
1 . B eiKT
E,W = — K23, [sin 04 L,,. (19a)
3 7
By the same method,
2 ) . . eiKr
H.,7 = _g Kﬁc3ﬁz[cos # sin 6 -+ cos <I><I>] H,,
r
21: R . R eiKr
Hy,V = 3 K238, [cos 8 cos ®F + sin &P | H,y
i . . eiKr
H, VW = —g— K263‘82[Sln 00] H,,. (19b)
r
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Debye's method consists of determining the distant
field due to an equivalent dipole on the particles and of
identifying this field with the field previously obtained.
Now, expressing the field due to a dipole of components
Pm(xl:xr X2=1, x3=Z)’

R 6iKT
By =2 V><V><<aei >
inE, ¥

which for 2>\ becomes

72 . R e'iKr
EJ = [cos 8 cos ®F — sin BP]
T € ¥
py 72 ) . R eiKr
EW = [cos 6 sin 9 + cos P)
Teo ¥
5K2 . 8iKr
EVW = ? [—sin 64] (20)
d7e, I3

By identifying (19) with (20),
8k, 4rE,

P = EEna, and p, = —
Y ¥y v

By, (212)

By an analogous procedure,

8 47 E,
Mg = — C3B§H0§ and m, = —

AH o8, (21D)

In an anisotropic medium, the relationships between
D and E and between B and H are given by the second
order symmetric tensors € and u. These relationships
will be determined without an explicit calculation of the
components of € and j.

Take E and H in the y and z directions, respectively.
0, is a rotation around the ¥y axis and 6, is a rotation
around the x axis after 6;. This may be represented by a
rotation matrix R, such that RX =X’, where

cos 0 —sin &
R = | sin 6; sin 6, cosf; cos6;sin b |,
sin #; cos f:  —sin 02  cos 6, cos B,

X’ =reference system of the spheroid,
X =reference system defined by the incident field

?

so that

E% = E,(—sin8,&" + cos 8 sin 829" + cos 8; cos 628')
H,3 = H,(cos 8y’ — sin 0,%")

and, hence from (21a) and (21b),

8TE, .
P, = 3 oy (—sin6y) E,

, 8rE, .
Py = 3 Bay(cos by 8in 6s) E,
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87I'Eo
bl = — 3, (cos 01 cos 6) E,
8¢ cos
m, =0 my’/ = + v . 0.H,
2 3 2 SIn

as

P,
E,=E,+ W and P, = AP,/ + BpP,/ + CP,.

2
Where 4, B, C are the direction cosines,
A7c?

€; = € {1 "l— '—3_—‘ N[at(sinz 01 + COS2 01 sin2 02)

+ a,(cos? 8; cos? 02)]}
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dyrc®
By = Mo [1 -5 N(B: cos? 8 + 8, sin? 02)], (22)
where
Pll(En) 2
ar =20, = 20, = — 1(£)=— ) :
RS tanh™t — — ’
& £r—1
Py(%,) 1
T TR 1
T fanht— — —
o &
3 )
2
Br= —28,=—28, =2 p —
— 0:(8)
L I3 E =ty
B 1
tanh=! — — e
Eu 202 - 1
° P
o [%ls ) 2
o h|. 2 0. ) tanh 1 4 28
— 0, aph—! — + %%
aE go Eog - go

By putting E=E$, H=H2 and assuming propaga-
tion along x,

imc?

3

€ = € [1 -4~ N{a; cos? 6, + «,sin? 02)]

4qc? . .
2 = Uo {1 -3 N[B.(sin?8; + cos?0; sin? )

+ 8. cos? 0, cos? 02]} . (23)
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Egs. (22) and (23) are equivalent to the knowledge of
tensors € and g and allow the calculation of the optical
properties of this medium.

For £4— =, prolate spheroids become spheres and the
medium becomes isotropic. Eqs. (22) and (23) give the
sphere case

37t
[Beltrae = [Beltonee = o

38
fadier = [l =

¢

and, consequently,

(1 + 47 Nr?)
Bz = py = gl — 2w N7?)

€ = € =

which are the well known expressions for the case of a
sphere as found in the literature.?

Trae OBLATE CASE

The method is identical to that of prolate case, so
only the differences in the main steps will be pointed
out.

In this case, the reference system where Laplace
equation can be solved by separation of variables is an
oblate system as described by Smythe.t The potential
functions obtained are

cos
Vo,V = (0P, () P (i) . m®
¢ sin

i .. cos
¢emn(2) = (1/)th'£7”(7’) Qnm(ig) . qu)'
¢ sin

The scattered near field is given by

Hy® = i8H oS ™®
H,,* = i8,HquSe1n®
Hy* = if.H,.Sc01™®

Eys = iaonpsell(2)
Ely?‘ = iO(yEoySOH(?‘)

Elzs = iaonzSEOI(g)

PL(it) Pa(it,)
Ay = ay = — —————— a, = — —
Q11(i&,) 01(i&)
I] PG -
B B a_s (i€
R out |
9 ot
i3 o

ap )
) [BE 1(1€

) L 9 Q1(i) |
— 040
dE [

The distant field in this case has the same expression
(19) as in the prolate case except for the a and 3 factors.
By following the same method, €, y,, €, p. as given by

2
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(22) and (23) is obtained, but here a;, a., 8: and S, are
given by

. 2
a; = — 2, = — 2oy = 1 : ,
tan™!l— —
£ &P +1
) 1
o, = la, = —
1 1
tan™l— — —
5 &
. . 2
Bi = 2B, = 2if, = — P
tan~!— — ———
L B+ &
' ! (24)
S 1 &
tan~!— —
£ &1

Eqgs. (22)—-(24) describe the optical properties of the
medium for the oblate case.

For £0—0, the spheroid becomes a disk and according
to (22)-(24),

4
[at]fo=0 = 2[136]$o=0 =" Qg = ,Bt - 0-

w

Then from (22),

16
€& = € [1 + 5 ¢3N(sin? 6; + cos? ¢, sin? (b):l

8
Ly = U (1 — ? ¢3V sin? 02>

which is identical to the expressions given in the litera-
ture (see for example Kraus®) for disks, if it is noticed
that 2¢ becomes the disk diameter.

NuMERrICAL CALCULATIONS

Fig. 1 and Fig. 2 show 8;/NV and 8/ N as a function of
%o for the prolate and oblate cases, respectively. 6; and 8,
are the incremental electric permittivity and magnetic
permeability defined by

€

€o

01 = ¢ — 1 where

€p =

where u, = —
Ho

6 =1— pu,

In Figs. 1 and 2, the upper group of curves refers to
81 and the lower group to 8;. Several incidence angles are
considered. E and H are in the 2 and # directions, re-
spectively, and the propagation along the £ direction.

The largest dimension of the spheroids is fixed as 2
cm by making ¢£,=1.0 cm and N is the number of
particles per cubic meter.

By means of Figs. 1 and’ 2, one may determine the
optical properties of the medium in a first-order approxi-
mation for any desired shape of spheroids.
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Fig. 1—Plots of the incremental electric permitivity and magnetic
permeability as functions of the eccentricity £, for the prolate
case. The upper group of curves refers to 8, and the lower group
to 52.
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Fig. 2—The oblate case. The incremental electric permittivity and
magnetic permeability as functions of the eccentricity. The upper
group of curves refers to 8 and the lower group to é..



